Abstract

In this paper, an algorithm to compute surface roughness of digital elevation model (DEM) terrains via multiscale analysis is proposed. The algorithm employs the lifting scheme to generate multiscale DEMs. At each scale, the areas of pixels that are modified are computed. Granulometric analysis is employed to compute the average area of curvature regions in the terrain, and the average roughness of the terrain due the distribution of curvature regions. The selected case studies of the algorithm implementation demonstrated that the proposed algorithm provides a surface roughness parameter that is realistic with respect to the amplitudes and frequencies of the terrain, invariant with respect to rotation and translation, and has intuitive meaning. The algorithm allows for a good quantification of a region’s convexity/concavity over varying scales, distinguishing between shallow and deep incisions of valleys and ridges of the terrain, and hence, provides an accurate surface roughness parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.