Abstract

Total Suspended Solids (TSS) and chlorophyll-a concentration are two critical parameters to monitor water quality. Since directly collecting samples for laboratory analysis can be expensive, this paper presents a methodology to estimate this information through remote sensing and Machine Learning (ML) techniques. TSS and chlorophyll-a are optically active components, therefore enabling measurement by remote sensing. Two study cases in distinct water bodies are performed, and those cases use different spatial resolution data from Sentinel-2 spectral images and unmanned aerial vehicles together with laboratory analysis data. In consonance with the methodology, supervised ML algorithms are trained to predict the concentration of TSS and chlorophyll-a. The predictions are evaluated separately in both study areas, where both TSS and chlorophyll-a models achieved R-squared values above 0.8.

Highlights

  • The preservation of water resources creates many global-scale challenges

  • Considering that aquatic systems are subject to degradation, monitoring Total Suspended Solids (TSS) and chlorophyll-a is essential for sustainability and the better management of water resources

  • There is evidence in the literature that these parameters are optically active components and that it is possible to approximate their concentration by putting together remote sensing and machine learning

Read more

Summary

Introduction

The preservation of water resources creates many global-scale challenges. Constant and dynamic monitoring of these environments is only viable through extensive use of technologies that allow inexpensive and effective monitoring [1]. Considering that the prediction of water quality parameters is a critical aspect in any aquatic system, the research on methods that allow this estimate in lakes and reservoirs has significant value [2]. Eutrophication is a process that leads to water deterioration in lentic environments (water is still and not rapidly moving), and this happens when a body of water becomes overly enriched with nutrients, mostly caused by anthropogenic activities, which induce excessive growth of algae in the environment. Chlorophyll-a, turbidity, and suspended solids are physicochemical water parameters related to eutrophication, and their evaluation can be used to assess the eutrophic state of water. The suspended solids may indicate erosive processes within the watershed and additional water pollution since it can carry or store pollutants [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call