Abstract

The problem of calculating the vibrations of rotating structures has challenged analysts since the observation that use of traditional modal coordinates in such problems leads to the prediction of instability involving infinite deformation when rotation rates exceed the first natural frequency. A method using a system of nonlinearly coupled deformation modes to analyze rotating general, linear (unjointed) structures that addresses the problem of erroneously predicting infinite deformations has been presented in a preceding paper (Segalman and Dohrmann, 1995). This technique is employed to address several types of problems ranging from simple beams to an inflated membrane structure. Some of the details of exploiting existing finite element codes to evaluate the relevant matrices are also developed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call