Abstract

We introduce a novel approach to building corridors in spatial conservation prioritization. The underlying working principle is the use of a penalty structure in an iterative algorithm used for producing a spatial priority ranking. The penalty term aims to prevent loss or degradation of structural connections, or, equivalently, to promote to a higher rank landscape elements that are required to keep networks connected. The proposed method shows several convenient properties: (1) it does not require a priori specification of habitat patches, end points or related thresholds, (2) it does not rely on resistance coefficients for different habitats, (3) it does not require species targets, and (4) the cost of additional connectivity via corridors can be quantified in terms of habitat quality lost across species. Corridor strength and width parameters control the trade-off between increased structural connectivity via corridors and other considerations relevant to conservation planning. Habitat suitability or dispersal suitability layers used in the analysis can be species specific, thus allowing analysis both in terms of structural and functional connectivity. The proposed method can also be used for targeting habitat restoration, by identifying areas of low habitat quality included in corridors. These methods have been implemented in the Zonation software, and can be applied to large scale and high resolution spatial prioritization, effectively integrating corridor design and spatial conservation prioritization. Since the method operates on novel principles and combines with a large number of features already operational in Zonation, we expect it to be of utility in spatial conservation planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.