Abstract
In this paper, a novel discrete-time sliding mode control is proposed in order to attenuate structural vibration due to earthquake forces. The analysis is based on the lateral-torsional vibration under the bidirectional waves. The proposed fuzzy modeling based sliding mode control can reduce chattering due to its time-varying gain. In the modeling equation of the structural system, the uncertainty exists in terms of sti¤ness, damping forces and earthquake. Fuzzy logic model is used to identify and compensate the uncertainty associated with the modeling equation. We prove that the closed-loop system is uniformly stable using Lyapunov stability analysis. The experimental result reveals that discrete-time sliding mode controller offers significant vibration attenuation with active mass damper and torsional actuator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.