Abstract

With the rapid development of semiconductor technology, the reduction in device operating voltage and threshold voltage has made integrated circuits more susceptible to the effects of particle radiation. Moreover, as process sizes decrease, the impact of charge sharing effects becomes increasingly severe, with soft errors caused by single event effects becoming one of the main causes of circuit failures. Therefore, the study of sensitivity evaluation methods for integrated circuits is of great significance for promoting the optimization of integrated circuit design, improving single event effect experimental methods, and enhancing the irradiation reliability of integrated circuits. In this paper, we first established a device model for the charge sharing effect and simulated it under reasonable conditions. Based on the simulation results, we then built a neural network model to predict the charge amounts in primary and secondary devices. We also propose a comprehensive automated method for calculating soft errors in unit circuits and validated it through TCAD simulations, achieving an error margin of 2.8-4.3%. This demonstrated the accuracy and effectiveness of the method we propose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.