Abstract

Heat is increasingly used as a natural tracer to quantify water fluxes at the groundwater-surface waterinterface. We present a systematic approach to monitor and evaluate stream and streambed temperatures to derive daily-updated temperature-based water exchange fluxes between the stream and the streambed. Specifically designed multi-level temperature sensors coupled with a data logger and GSM modem are used to monitor temperature in the stream and streambed and transfer this data daily to a database. A suite of MATLAB scripts with structured query language (SQL) commands is applied to extract the data for processing using an inverse numerical model to estimate water flow based on the measured temperatures. Compared to common analytical approaches, which typically require sinusoidal diurnal temperature pattern, our numerical model can utilize temperature records without daily variations. Temperature-based calculations to quantify vertical water fluxes at the stream-groundwater interface can provide a supplement to, or even a replacement of, calculations based on vertical hydraulic gradients and Darcy’ law.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call