Abstract

This work presents a method for force calibration of rectangular atomic force microscopy (AFM) microcantilevers under heavy fluid loading. Theoretical modeling of the thermal response of microcantilevers is discussed including a fluid-structure interaction model of the cantilever-fluid system that incorporates the results of the fluctuation-dissipation theorem. This model is curve fit to the measured thermal response of a cantilever in de-ionized water and a cost function is used to quantify the difference between the theoretical model and measured data. The curve fit is performed in a way that restricts the search space to parameters that reflect heavy fluid loading conditions. The resulting fitting parameters are used to calibrate the cantilever. For comparison, cantilevers are calibrated using Sader's method in air and the thermal noise method in both air and water. For a set of eight cantilevers ranging in stiffness from 0.050 to 5.8 N/m, the maximum difference between Sader's calibration performed in air and the new method performed in water was 9.4%. A set of three cantilevers that violate the aspect ratio assumption associated with the fluid loading model (length-to-width ratios less than 3.5) ranged in stiffness from 0.85 to 4.7 N/m and yielded differences as high as 17.8%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.