Abstract
When the noise process in adaptive identification of linear stochastic systems is correlated, and can be represented by a moving average model, extended least squares algorithms are commonly used, and converge under a strictly positive real (SPR) condition on the noise model. In this paper, we present an adaptive algorithm for the estimation of autoregressive moving average (ARMA) processes, and show that it is convergent without any SPR condition, and has a convergence rate of O({ loglog t)/t} 1 2 ) .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.