Abstract

Metagenomics facilitates the study of the genetic information from uncultured microbes and complex microbial communities. Assembling complete genomes from metagenomics data is difficult because most samples have high organismal complexity and strain diversity. Some studies have attempted to extract complete bacterial, archaeal, and viral genomes and often focus on species with circular genomes so they can help confirm completeness with circularity. However, less than 100 circularized bacterial and archaeal genomes have been assembled and published from metagenomics data despite the thousands of datasets that are available. Circularized genomes are important for (1) building a reference collection as scaffolds for future assemblies, (2) providing complete gene content of a genome, (3) confirming little or no contamination of a genome, (4) studying the genomic context and synteny of genes, and (5) linking protein coding genes to ribosomal RNA genes to aid metabolic inference in 16S rRNA gene sequencing studies. We developed a semi-automated method called Jorg to help circularize small bacterial, archaeal, and viral genomes using iterative assembly, binning, and read mapping. In addition, this method exposes potential misassemblies from k-mer based assemblies. We chose species of the Candidate Phyla Radiation (CPR) to focus our initial efforts because they have small genomes and are only known to have one ribosomal RNA operon. In addition to 34 circular CPR genomes, we present one circular Margulisbacteria genome, one circular Chloroflexi genome, and two circular megaphage genomes from 19 public and published datasets. We demonstrate findings that would likely be difficult without circularizing genomes, including that ribosomal genes are likely not operonic in the majority of CPR, and that some CPR harbor diverged forms of RNase P RNA. Code and a tutorial for this method is available at https://github.com/lmlui/Jorg and is available on the DOE Systems Biology KnowledgeBase as a beta app.

Highlights

  • Shotgun metagenomics and marker gene sequencing are powerful tools to survey and study organisms that we cannot yet isolate and culture in the laboratory

  • Since we cannot culture many microorganisms that are found in the environment, animals, and the human body, scientists rely on shotgun metagenomics to reveal their genomes and to infer their traits and capabilities

  • We present a semi-automated method called Jorg that can be used to improve and eventually complete prokaryotic and viral genomes from short read metagenomics data, and include quality checks for misassemblies and completeness

Read more

Summary

Introduction

Shotgun metagenomics and marker gene sequencing are powerful tools to survey and study organisms that we cannot yet isolate and culture in the laboratory. This is especially true for environmental samples where culturability estimates for bacterial and archaeal communities range from ~22–53% for soil, ~10–70% for ocean and lakes, and ~8–32% for ocean sediment [1]. In the 1990s when the first genomes were sequenced and assembled, scientists used long reads from Sanger sequencing and overlap layout consensus (OLC) methods for assembly [3]. To handle the deluge of sequencing data (in terms of the volume of reads and projects) de Bruijn graph assembly methods were developed

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call