Abstract
Multiscale symbolic dynamic entropy (MSDE) has been recently proposed to characterize the dynamical behavior of time series, which has merits of high computational efficiency and robustness to noise comparing with multiscale sample entropy (MSE) and multiscale permutation entropy (MPE). However, the variance of the MSDE values increases as the length of a time series becomes shorter using multiscale analysis. To address this shortcoming, a new method, namely refined composite multi-scale symbolic dynamic entropy (RCMSDE), is proposed to extract the fault information of rotating machinery. Then, Laplacian score (LS) is utilized to reduce the dimension of eigenvectors. In the end, the selected features are taken as the input of the improved support vector machine based on binary tree (ISVM-BT) for fault type identification. The effectiveness of the proposed method is validated using both the simulation and two experimental tests. Results demonstrate that the proposed method generates highest classification accuracy in comparison with existing methods such as MSDE, refined composite multiscale sample entropy (RCMSE) and refined composite multiscale permutation entropy (RCMPE).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.