Abstract
In this paper, we present a method based on local density and random walks (LDRW) for core-attachment complexes detection in protein-protein interaction (PPI) networks whether they are weighted or not. Our LDRW method consists of two stages. Firstly, it finds all the protein-complex cores based on local density of subnetwork. Then it uses random walks with restarts for finding the attachment proteins of each detected core to form complexes. We evaluate the effectiveness of our method using two different yeast PPI networks and validate the biological significance of the predicted protein complexes using known complexes in the Munich Information Center for Protein Sequence (MIPS) and Gene Ontology (GO) databases. We also perform a comprehensive comparison between our method and other existing methods. The results show that our method can find more protein complexes with high biological significance and obtains a significant improvement. Furthermore, our method is able to identify biologically significant overlapped protein complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Bioinformatics and Computational Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.