Abstract
Aquifer thermal energy storage (ATES) systems with groundwater heat pumps (GWHP) provide a promising and effective technology to match the renewable energy supply and demand between seasons. This paper analyses the integration of an ATES and GWHP system in both district heating (DH) and district cooling (DC) networks in terms of system's efficiency, techno-economic feasibility and impact on the surrounding groundwater areas. To that end, a novel method of holistic integration of groundwater modeling is proposed and demonstrated for retrieving and analyzing data from a variety of open Finnish public data sources. A case study is presented, where the ATES integration is examined within an existing district heating network in Southern Finland. It is concluded that combining heating and cooling, with seasonally reversible ATES operation and balanced pumping volumes during summer and winter periods, had low impact on the aquifer area and is economically feasible. Finally, the study concludes that even with limited data, obtained from open public data sources, it is possible to assess the ATES integration with an acceptable accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.