Abstract
The choice of alloying method for ferrous powder metallurgy alloys is often dictated by the oxidation potential of the alloying elements used in powder and compact manufacture. Silicon is effective in improving properties of ferrous PM steels; however, if added to the melt prior to atomization, the likelihood of oxidation is high. Alternatively, Si-rich and more complex particulates can be combined with the base powder, i.e., iron or low-alloy steel, with alloying occurring by solid-state diffusion during sintering. The effectiveness of these additives to improve material properties is dependent on their distribution throughout the material volume, as determined by diffusion of each added element. In this study, the distribution of silicon was quantified using energy-dispersive spectroscopy on an iron-based alloy composition. These data were compared with the volume fraction of the various transformation products in cross sections of hardenability samples using both light and electron microscopy. Predictions on the effects of local chemical composition, cooling rate, and microstructure are made.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.