Abstract
We report an upper-division undergraduate solid-state materials chemistry experiment involving the pit and crevice corrosion of a copper surface caused by an aqueous NaCl solution simulating a seawater environment. Surface corrosion of the copper can be shown quite dramatically using atomic force microscopy (AFM) within only hours of exposure to the saline solution. The copper surfaces can also be treated with an alkanethiol solution to form a self-assembled monolayer (SAM) on the surface. When exposed to the salt-water solution, the SAM layer is shown by AFM to protect the surface from corrosion. We have also shown that several different AFM analysis methods are needed to adequately quantify the surface features including roughness and power spectral density. This experiment enables students to not only see how AFM can be used to observe changes in surface morphology, but also learn to develop an understanding of the analysis techniques used to quantify AFM data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.