Abstract

In this paper, the term knowledge-based neural network (NN) design is used to refer to all efforts at exploiting prior knowledge in neural network configuration and training. A variety of techniques have been proposed for this purpose; SCANDAL provides a workbench for evaluating and integrating these techniques. After a quick overview of three main approaches to NN design, we describe SCANDALS multi-agent, metalevel architecture as well as its strategies for maximizing the use of domain knowledge. To assess the impact of prior knowledge on NN performance, experiments were conducted comparing knowledge-based techniques with a search-based configuration algorithm. Results show that the use of prior knowledge in neural network design leads to both faster learning and improved generalization. More interestingly, this appears to hold even when domain knowledge and data are deficient; in such cases, knowledge is extracted from the available data and is used both to configure the network and to generate artificial training instances. This leads us to hope that time-consuming iterative search can be avoided even in knowledge-lean domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.