Abstract

Apart from national security and military purposes, it is also of great importance to detect picric acid (PA) in aqueous solution for pollution control. Herein, we report a gold nanoparticle (AuNP)-based sensor for detection of PA in aqueous condition, based on metal-enhanced fluorescence (MEF) of poly(allylamine)hydrochloride (PAH). Notable enhancement in fluorescence intensity is observed when PAH is incubated with Au@SiO2 nanoparticles, where silica shell controls the distance between gold core and PAH. Almost ∼280 fold enhancement is recorded when PAH is incubated with ∼45 nm diameter Au nanoparticles. A significant reduction in excited state lifetime followed the enhancement in fluorescence intensity, identifying the mechanism to be primarily obtained from the intrinsic radiative decay rate enhancement of PAH. The MEF sensor shows excellent selectivity for detection of PA in water, among similar electron deficient compounds via fluorescence quenching. The detection limit of the sensor is calculated to be 79 nM, in the linear range. Detection of PA is demonstrated in simulated water samples, where matrix effects are taken into account to assess the efficacy of the sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.