Abstract

The lithium–sulfur battery has a very high theoretical capacity and specific energy density, yet its applications have been obstructed by fast capacity fading and low Coulombic efficiency due to the dissolution of polysulfides. Herein we utilize HKUST-1 as the host material to trap sulfur and thus to diminish the dissolution problem. A large amount of sulfur (40 wt %) has been incorporated in HKUST-1 pore metrics to achieve HKUST-1⊃S composite whose structure has been established by both single and powder X-ray diffraction studies. The strong confinement of HKUST-1 for sulfur attributed to the suitable pore spaces and open Cu2+ sites has enabled the resulting Li–S⊂HKSUT-1 battery to show excellent performance with a capacity of about 500 mAh/g after 170 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.