Abstract
With adequate building blocks, metal-organic frameworks (MOFs) can combine magnetic ordering and porosity. This makes MOFs a promising platform for the development of stimuli-responsive materials that show drastically different magnetic properties depending on the presence or absence of guest molecules within their pores. Here we report a CO2-responsive magnetic MOF that converts from ferrimagnetic to paramagnetic on CO2 adsorption, and returns to the ferrimagnetic state on CO2 desorption. The ferrimagnetic material is a layered MOF with a [D+-A--D] formula, produced from the reaction of trifluorobenzoate-bridged paddlewheel-type diruthenium(II) clusters as the electron donor (D) with diethoxytetracyanoquinodimethane as the electron acceptor (A). On CO2 uptake, it undergoes an in-plane electron transfer and a structural transition to adopt a [D-A-D] paramagnetic form. This magnetic phase change, and the accompanying modifications to the electronic conductivity and permittivity of the MOF, are electronically stabilized by the guest CO2 molecules accommodated in the framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.