Abstract

We report herein five sensing platforms for the detection of five gastric cancer associated microRNAs (miRNAs). The sensing platforms are hybrids formed from a water-stable metal organic framework (MOF) {[Cu(dcbb)2(H2O)2]·10H2O}n (1, H2dcbbBr=1-(3,5-dicarboxybenzyl)-4,4′-bipyridinium bromide), respectively with five carboxyfluorescein (FAM) labeled probe single-stranded DNA (probe ss-DNA, denoted as P-DNA). Within the hybrid, MOF 1 tightly interacts with the P-DNA through electrostatic and/or π-stacking interactions and results in fluorescence quenching of FAM via a photo-induced electron transfer (PET) process. In the presence of the complementary target miRNAs miR-185, miR-20a, miR-92b, miR-25 and miR-210, which are expressed abnormally in the plasma of gastric carcinoma patients, P-DNA is released from the surface of MOF 1 ascribed to the stronger base pair matching, leading to the FAM fluorescence recovery. Each P-DNA@1 system is effective and reliable for the detection of its complementary target miRNA with the detection limits from 91 to 559pM, and is not interfered by other four miRNA sequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call