Abstract
Halogenation is an important alkane functionalization strategy, but O2 is widely considered the most desirable terminal oxidant. Here, the aerobic iodination of alkanes, including methane, was performed using catalytic [nBu4N]Cl and light irradiation (390 nm). Up to 10 turnovers of CH3I were obtained from CH4 and air, using a stop-flow microtubing system. Mechanistic studies using cyclohexane as the substrate revealed important details about the iodination reaction. Iodine (I2) serves multiple roles in the catalysis: (1) as the alkyl radical trap, (2) as a precursor for the light absorber, and (3) as a mediator of aerobic oxidation. The alkane activation is attributed to Cl• derived from photofragmentation of the electron donor-acceptor complex of I2 and Cl-. The kinetic profile of cyclohexane iodination showed that aerobic oxidation of I3- to produce I2 in CH3CN is turnover-limiting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.