Abstract

Organic ferroelectrics have received a great deal of interest due to their exclusive properties. However, organic ferroelectrics have not been fully explored, which hinders their practical application. Here, we presented a novel metal-free organic molecular ferroelectric [4-MCHA][ClO4 ] (1) (4-MCHA=trans-4-methylcyclohexylamine), which exhibits an above-room-temperature of 328 K. Strikingly, the single crystal structure analysis of 1 shows that the driving force of phase transition is related to the interesting chair-boat conformation change of 4-MCHA cation, in addition to the order-disorder transition of ClO4 - anion. Using piezoelectric response force microscopy (PFM), the presence of domains and the implemented polarization switching were clearly observed, which explicitly determined the presence of room-temperature ferroelectricity of 1. As far as we know, the ferroelectric phase transition mechanism attributed to the conformational change in a trans isomeric cation is very rare. This research enriched the path of designing ferroelectric materials and smart materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.