Abstract

The virtual machine (VM) allocation problem is one of the main issues in cloud data centers. This article proposes a new metaheuristic method to optimize joint task scheduling and VM placement (JTSVMP) in cloud data center. The JTSVMP problem, though composed of two parts, namely task scheduling and VM placement, is treated as a joint problem to be resolved by using metaheuristic optimization algorithms (MOAs). The proposed co-optimization process aims to schedule task into the VM which has the least execution cost within deadline constraint and then to place the selected VM on most utilized physical host (PH) within capacity constraint. To evaluate the performance of our proposed co-optimization process, we compare the performances of two different scenarios, i.e., task scheduling algorithms and integrateion co-optimization of task scheduling and VM placement using MOAs, namely the basic glowworm swarm optimization (GSO), moth-flame glowworm swarm optimization (MFGSO) and genetic algorithm (GA). Simulation results show that optimizing joint task scheduling and VM placement leads to better overall results in terms of minimizing execution cost, makespan and degree of imbalance and maximizing PHs resource utilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.