Abstract
Functional screening of environmental DNA (eDNA) libraries is a potentially powerful approach to discover enzymatic "unknown unknowns", but is usually heavily biased toward the tiny subset of genes preferentially transcribed and translated by the screening strain. We have overcome this by preparing an eDNA library via partial digest with restriction enzyme FatI (cuts CATG), causing a substantial proportion of ATG start codons to be precisely aligned with strong plasmid-encoded promoter and ribosome-binding sequences. Whereas we were unable to select nitroreductases from standard metagenome libraries, our FatI strategy yielded 21 nitroreductases spanning eight different enzyme families, each conferring resistance to the nitro-antibiotic niclosamide and sensitivity to the nitro-prodrug metronidazole. We showed expression could be improved by co-expressing rare tRNAs and encoded proteins purified directly using an embedded His6-tag. In a transgenic zebrafish model of metronidazole-mediated targeted cell ablation, our lead MhqN-family nitroreductase proved ∼5-fold more effective than the canonical nitroreductase NfsB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.