Abstract

Enterobacter cloacae is an opportunistic pathogen widely distributed in human and animal intestinal systems. The secretion of extended-spectrum β-lactamases (ESBLs) and cephalosporinase (AmpC) endows E. cloacae with strong drug resistance. In a previous study by our group, protein expression of E. cloacae under phoxim stress was measured by two-dimensional electrophoresis. Here, nuclear magnetic resonance was used to detect differences in E. cloacae metabonomics when under phoxim stress. We determined that there are 29 types of metabolites that differ between phoxim stress and normal culture conditions. Among these, 6 types of metabolites were upregulated in the phoxim stress group, and 23 types of metabolites were inhibited. Though enrichment analysis, seven pathways were identified by different expression levels of metabolites, which were involved in DNA and RNA synthesis, DNA damage repair, antioxidation and functions of the cell membrane and cell wall. The mechanism underlying how phoxim affects E. cloacae was determined by studying the results of both two-dimensional electrophoresis in our prior work and the analysis of E. cloacae metabonomic changes under phoxim stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.