Abstract

Ocean acidification, due to increased levels of anthropogenic carbon dioxide, is known to affect the physiology and growth of marine phytoplankton, especially in polar regions. However, the effect of acidification or carbonation on cellular metabolism in polar marine phytoplankton still remains an open question. There is some evidence that small chlorophytes may benefit more than other taxa of phytoplankton. To understand further how green polar picoplankton could acclimate to high oceanic CO2, studies were conducted on an Antarctic Chlorella sp. Chlorella sp. maintained its growth rate (∼0.180 d-1), photosynthetic quantum yield (Fv/Fm = ∼0.69) and chlorophyll a (0.145 fg cell-1) and carotenoid (0.06 fg cell-1) contents under high CO2, while maximum rates of electron transport decreased and non-photochemical quenching increased under elevated CO2. GCMS-based metabolomic analysis reveal that this polar Chlorella strain modulated the levels of metabolites associated with energy, amino acid, fatty acid and carbohydrate production, which could favour its survival in an increasingly acidified ocean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.