Abstract
Extracting knowledge from data streams received from observed objects through data mining is required in various domains. However, there is a lack of any kind of guidance on which techniques can or should be used in which contexts. Meta mining technology can help build processes of data processing based on knowledge models taking into account the specific features of the objects. This paper proposes a meta mining ontology framework that allows selecting algorithms for solving specific data mining tasks and build suitable processes. The proposed ontology is constructed using existing ontologies and is extended with an ontology of data characteristics and task requirements. Different from the existing ontologies, the proposed ontology describes the overall data mining process, used to build data processing processes in various domains, and has low computational complexity compared to others. The authors developed an ontology merging method and a sub-ontology extraction method, which are implemented based on OWL API via extracting and integrating the relevant axioms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Embedded and Real-Time Communication Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.