Abstract

This paper presents a meta-learning based, automatic distribution system load forecasting model selection framework. The framework includes the following processes: feature extraction, candidate model preparation and labeling, offline training, and online model recommendation. Using load forecasting needs and data characteristics as input features, multiple metalearners are used to rank the candidate load forecast models based on their forecasting accuracy. Then, a scoring-voting mechanism is proposed to weights recommendations from each meta-leaner and make the final recommendations. Heterogeneous load forecasting tasks with different temporal and technical requirements at different load aggregation levels are set up to train, validate, and test the performance of the proposed framework. Simulation results demonstrate that the performance of the meta-learning based approach is satisfactory in both seen and unseen forecasting tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.