Abstract
Feature extraction and selection are critical in sentiment analysis (SA) to extract and select only the appropriate features by removing those deemed redundant. As such, the successful implementation of this process leads to better classification accuracy. Inevitably, selecting high-quality minimal features can be challenging given the inherent complication in dealing with over-fitting issues. Most of the current studies used a heuristic method to perform the classification process that will result in selecting and examining only a single feature subset, while ignoring the other subsets that might give better results. This study explored the effect of using the meta-heuristic method together with the ensemble classification method in the sentiment classification of online reviews. Adding to that point, the extraction and selection of relevant features used feature ranking, hyper-parameter optimization, crossover, and mutation, while the classification process utilized the ensemble classifier. The proposed method was tested on the polarity movie review dataset v2.0 and product review dataset (books, electronics, kitchen, and music). The test results indicated that the proposed method significantly improved the classification results by 94%, which far exceeded the existing method. Therefore, the proposed feature extraction and selection method can help in improving the performance of SA in online reviews and, at the same time, reduce the number of extracted features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Information and Communication Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.