Abstract

The present study aimed to perform a meta-analysis using the random-effects model to merge published genetic parameter estimates for major indicators of ketosis [milk concentrations of acetone (ACETm) and β-hydroxybutyrate (BHBAm), and blood concentration of β-hydroxybutyrate (BHBAb)] in dairy cows. Overall, 51 heritability estimates and 130 genetic correlations from 19 papers published between 2012 and 2022 were used in this study. The average heritability estimates for ACETm, BHBAm, and BHBAb were 0.164, 0.123, and 0.141, respectively. The genetic correlation estimates between BHBAm and milk yield (MY), milk protein percentage (PP), and body condition score (BCS) were negative and moderate (−0.252, −0.200, and − 0.314, respectively). Genetic correlation estimates between BHBAm and milk fat percentage (FP), milk fat to protein ratio (FPR), and ketosis (KET) were moderate to high (0.411, 0.512, and 0.614, respectively). The genetic correlation estimates between BHBAb and MY and FP were low and equal to 0.128 and 0.035, respectively. The genetic correlation estimates between ACETm-MY and ACETm-PP were negative and moderate (−0.374 and − 0.398, respectively). Estimates of genetic correlation between ACETm and FP, FPR, and KET were moderate to high (0.455, 0.626, and 0.876, respectively). The results of this meta-analysis indicated the existence of additive genetic variation for ketosis indicator metabolites which could be exploited in genetic selection programs to reduce ketosis in dairy cows. Moreover, the results propose that selection for lower concentrations of indicator traits could be an effective plan for indirect improvement of production and reproduction performance, and health in dairy cows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call