Abstract
With the continuous advancement of global industrialization, a large amount of organic and inorganic pollutants have been discharged into the environment, which is essential for human survival. Consequently, the issue of water environment pollution has become increasingly severe. Photocatalytic technology is widely used to degrade water pollutants due to its strong oxidizing performance and non-polluting characteristics, and BiVO4-based photocatalysts are one of the ideal raw materials for photocatalytic reactions. However, a comprehensive global analysis of the factors influencing the photocatalytic performance of BiVO4-based photocatalysts is currently lacking. Here, we performed a meta-analysis to investigate the differences in specific surface area, kinetic constants, and the pollutant degradation performance of BiVO4-based photocatalysts under different preparation and degradation conditions. It was found that under the loading condition, all the performances of the photocatalysts can be attributed to the single BiVO4 photocatalyst. Moreover, loading could lead to an increase in the specific surface area of the material, thereby providing more adsorption sites for photocatalysis and ultimately enhancing the photocatalytic performance. Overall, the construct heterojunction and loaded nanomaterials exhibit a superior performance for BiVO4-based photocatalysts with 136.4% and 90.1% improvement, respectively. Additionally, within a certain range, the photocatalytic performance increases with the reaction time and temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.