Abstract

Transient mass diffusion and convection of volatile organic compounds (VOCs) from walls is an important issue for air quality in buildings. In the present work, a new model of these processes that captures mass transport within the wall structure is presented and applied for a ventilated enclosure. Porous wall structures composed of two solid phases (one carrying the VOC and one inert) and one fluid phase air are generated by the Controllable Structure Generation Scheme (CSGS) based on discrete Gaussian quadrature space and velocity. Mesoscopic scale parallel non-dimensional lattice Boltzmann method (P-NDLBM) simulations are performed for relevant ranges of wall porosity, Reynolds and Schmidt numbers for a two-dimensional enclosure with a top inlet and bottom outlets. The effect of the wall structure on mass transfer in the enclosure is investigated for two wall structures: type (A) a wall with randomly immersed particles, and type (B) a shape-separated wall structure. Results include transient VOC concentration and streamlines in the porous wall and the enclosure for a vary of porosities and diffusivities for each phase. The pore structure and porosity of the wall have significant impact on mass transfer. Type (B) structures are more favorable for rapid mass transfer within the wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.