Abstract

NiO nanosheets were deposited on the surface of a stainless steel substrate by using a facile, environmentally friendly, reflux deposition approach for supercapacitor (SC) applications. X-ray diffraction patterns and field emission scanning electron microscopy images revealed the formation of a face centred cubic crystal structure with a uniform, compact, smoothly ordered nanosheet like structure. This study focuses on the electrochemical supercapacitive properties of NiO nanosheets with respect to cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy techniques in a 1-(\(2^{\prime }{,}3^{\prime }\)-dihydroxypropyl)-3-methylimidazolium hydroxide [DHPMIM][OH] ionic liquid (IL) as an electrolyte. The electrochemical study revealed that NiO (0.3 M) showed a high-specific capacitance of \(\hbox {205.5 F g}^{-1}\) and an excellent cycling stability (80% specific capacitance retention after 5000 cycles) in the [DHPMIM][OH] IL electrolyte. Thus, the result showed that NiO nanosheets act as an active electrode material hold for SCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.