Abstract

Pleasure is a fundamental driver of human behaviour, yet its neural basis remains largely unknown. Rodent studies highlight opioidergic neural circuits connecting the nucleus accumbens, ventral pallidum, insula and orbitofrontal cortex as critical for the initiation and regulation of pleasure, and human neuroimaging studies exhibit some translational parity. However, whether activation in these regions conveys a generalizable representation of pleasure regulated by opioidergic mechanisms remains unclear. Here we use pattern recognition techniques to develop a human functional magnetic resonance imaging signature of mesocorticolimbic activity unique to states of pleasure. In independent validation tests, this signature is sensitive to pleasant tastes and affect evoked by humour. The signature is spatially co-extensive with mu-opioid receptor gene expression, and its response is attenuated by the opioid antagonist naloxone. These findings provide evidence for a basis of pleasure in humans that is distributed across brain systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call