Abstract
Inverse boundary problem are usually solved with a finite element model, with either limited accuracy or huge computation resources. Using a fine mesh results in a computationally demanding task, but when the region of interest is known, when one can easily locally refine the model, aiming for greater local accuracy. In this paper, a novel approach uses artificial neural network to estimate the location of the region of interest and refine this region before solving the inverse problem. The idea is illustrated by solving the electrical impedance tomography inverse problem. Result shows that the proposed method increases the accuracy without significantly affecting the computation resources necessary to solve the inverse problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.