Abstract

AbstractA meshless numerical procedure is developed for analyzing the transient heat conduction problem in non‐homogeneous functionally graded materials. In the proposed method the time derivative of temperature is approximate by the finite difference. At each time step the original nonlinear boundary value problem is transform into a hierarchy of non‐homogeneous linear problem by used the homotopy analysis method. In this method a sought solution is presented by using a finite expansion in Taylor series, which consecutive elements are solutions of series linear value problems defining differential deformations. Each of linear boundary value problems with the corresponding boundary conditions is solved by using the method of fundamental solutions and radial basis functions which are used for interpolation of the inhomogeneous term. The accuracy of the obtained approximate solution is controlled by the number of components of the Taylor series, while the convergence of the process is monitored by an additional parameter of the method. Numerical experiments demonstrate the efficiency and accuracy of the present scheme in the solution of the heat conduction problem in nonlinear functionally graded materials. (© 2013 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.