Abstract
We present a meshless particle method for Poisson and diffusion problems on domains with discontinuous coefficients and possibly inhomogeneous boundary conditions. The method is based on a domain-decomposition approach with suitable interface and boundary conditions between regions of different diffusivities, and on using discretization-corrected particle strength exchange operators [B. Schrader, S. Reboux, and I. F. Sbalzarini, J. Comput. Phys., 229 (2010), pp. 4159--4182]. We propose and compare two methods: The first one is based on an immersed interface approach, where interfaces are determined implicitly using a simplified phase-field equation. The second method uses a regularization technique to transform inhomogeneous interface or boundary conditions to homogeneous ones with an additional continuous volume contribution. After presenting the methods, we demonstrate their capabilities and limitations on several one-dimensional and three-dimensional test cases with Dirichlet and Neumann boundary conditions, and both regular and irregular particle distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.