Abstract

In this paper, an efficient and accurate meshless method is proposed for solving the time fractional advection–diffusion equation with variable coefficients which is based on the moving least square (MLS) approximation. In the proposed method, firstly the time fractional derivative is approximated by a finite difference scheme of order O((δt)2−α),0<α≤1 and then the MLS approach is employed to approximate the spatial derivative where time fractional derivative is expressed in the Caputo sense. Also, the validity of the proposed method is investigated in error analysis discussion. The main aim is to show that the meshless method based on the MLS shape functions is highly appropriate for solving fractional partial differential equations (FPDEs) with variable coefficients. The efficiency and accuracy of the proposed method are verified by solving several examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.