Abstract

The nonlinear integro-differential Berger equation is used for description of large deflections of thin plates. An iterative solution of Berger equation by the local boundary integral equation method with meshless approximation of physical quantities is proposed. In each iterative step the Berger equation can be considered as a partial differential equation of the fourth order. The governing equation is decomposed into two coupled partial differential equations of the second order. One of them is Poisson's equation whereas the other one is Helmholtz's equation. The local boundary integral equation method is applied to both these equations. Numerical results for a square plate with simply supported and/or clamped edges as well as a circular clamped plate are presented to prove the efficiency of the proposed formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.