Abstract

In previous simulations of train–bridge interaction systems (TBIS), the supporting system for the train are commonly treated as beam structures, leading to less accurate results, particularly for small-span cases. To address this limitation, a modified vertical TBIS is proposed. In the presented TBIS, the supporting system is considered as a Reissner–Mindlin plate, and the displacement field is described by first-order shear deformation theory (FSDT). To establish the model, radial point interpolation method (RPIM), a meshless method, is employed. Finally, a coupled dynamic equation is established to calculate various responses of the system. Several numerical examples are presented to illustrate the disparities between the system based on plate model and traditional beam model. The results indicate that the beam model yields higher estimates of the mid-span vertical displacement of the bridge, while the peak of the mid-span vertical acceleration is smaller compared to the plate model; additionally, it is observed that the carbody is primarily influenced by rail irregularities. Consequently, the proposed plate model offers distinct advantages over the beam model in providing comprehensive structural response information, thereby offering novel insights into bridge design and analysis. Additionally, this marks the inaugural application of the meshless method in the field of TBIS, which further extends the application scope of meshless methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.