Abstract

This short communication documents the first attempt to apply the generalized finite difference method (GFDM) for inverse heat conduction analysis of functionally graded materials (FGMs). The fact that the GFDM is a meshless collocation method makes it particularly attractive in solving problems with complex geometries and high dimensions. By employing the Taylor series expansion and the moving least-squares technique, the method produces sparse and banded matrix which makes it possible to perform large-scale simulations. Three benchmark examples are provided to demonstrate the accuracy and adaptability of the GFDM approach in solving the inverse Cauchy problems. The convergence and stability of the method with respect to the amount of noise added into the input data are analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.