Abstract

In this paper, Chebyshev interpolation nodes and barycentric Lagrange interpolation basis function are used to deduce the scheme for solving the Helmholtz equation. First of all, the interpolation basis function is applied to treat the spatial variables and their partial derivatives, and the collocation method for solving the second order differential equations is established. Secondly, the differential equations on a given test node. Finally, based on three kinds of test nodes, numerical experiments show that the present scheme can not only calculate the high wave numbers problems, but also calculate the variable wave numbers problems. In addition, the algorithm has the advantages of high calculation accuracy, good numerical stability and less time consuming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.