Abstract

In this work, a novel approach for efficient analysis of transient thermo-elastic problems including a moving point heat source is presented. This approach is based on a meshfree method with dynamic reconfiguration of the nodal points. In order to accurately capture the large temperature gradients at the location of the concentrated heat source, a fine configuration of nodal points at this location is selected. In contrast, a coarser nodal arrangement is used in other parts of the problem domain. During the problem analysis, the fine nodal arrangement moves with the point heat source. Consequently, the meshfree methods are ideally suited to this approach. In the present work, the meshfree radial point interpolation method (RPIM) is adopted for the numerical analyses. Since the density of the nodal points varies in different parts of the domain, the background decomposition method (BDM) is used for efficient computation of the domain integrals. In the BDM, the density of the integration points conform to that of the nodal points and thus the computational effort is minimized. Some numerical examples are provided to assess the accuracy and usefulness of the proposed approach in computation of the temperature, displacement, and stress fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call