Abstract

In this paper, we propose a novel mesh-free numerical method for solving the elliptic interface problems based on deep learning. We approximate the solution by the neural networks and, since the solution may change dramatically across the interface, we employ different neural networks for each sub-domain. By reformulating the interface problem as a least-squares problem, we discretize the objective function using mean squared error via sampling and solve the proposed deep least-squares method by standard training algorithms such as stochastic gradient descent. The discretized objective function utilizes only the point-wise information on the sampling points and thus no underlying mesh is required. Doing this circumvents the challenging meshing procedure as well as the numerical integration on the complex interfaces. To improve the computational efficiency for more challenging problems, we further design an adaptive sampling strategy based on the residual of the least-squares function and propose an adaptive algorithm. Finally, we present several numerical experiments in both 2D and 3D to show the flexibility, effectiveness, and accuracy of the proposed deep least-square method for solving interface problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.