Abstract
Abstract This article investigates the convergence of the Generalized Frank–Wolfe (GFW) algorithm for the resolution of potential and convex second-order mean field games. More specifically, the impact of the discretization of the mean-field-game system on the effectiveness of the GFW algorithm is analyzed. The article focuses on the theta-scheme introduced by the authors in a previous study. A sublinear and a linear rate of convergence are obtained, for two different choices of stepsizes. These rates have the mesh-independence property: the underlying convergence constants are independent of the discretization parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.