Abstract
The quadratic loss penalty is a well known technique for opti- mization and control problems to treat constraints. In the present paper they are applied to handle control bounds in a boundary control problems with semilinear elliptic state equations. Unlike in the case of finite dimensional optimization for infinite dimensional problems the order of convergence could only be roughly estimated, but numerical experiments revealed a clearly better convergence behavior with constants independent of the dimension of the used discretization. The main result in the present paper is the proof of sharp con- vergence bounds for both, the finite und infinite dimensional problem with a mesh-independence in case of the discretization. Further, to achieve an efficient realization of penalty methods the principle of control reduction is applied, i.e. the control variable is represented by the adjoint state variable by means of some nonlinear function. The resulting optimality system this way depends only on the state and adjoint state. This system is discretized by conforming linear finite elements. Numerical experiments show exactly the theoretically predicted behavior of the studied penalty technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.