Abstract

Based on the continuum model for granular media developed in Dunatunga et al. we propose a mesh-free generalized finite difference method for the simulation of granular flows. The model is given by an elasto-viscoplastic model with a yield criterion using the μ(I) rheology from Jop et al. The numerical procedure is based on a mesh-free particle method with a least squares approximation of the derivatives in the balance equations combined with the numerical algorithm developed in Dunatunga et al. to compute the plastic stresses. The method is numerically tested and verified for several numerical experiments including granular column collapse and rigid body motion in granular materials. For comparison a nonlinear microscopic model from Lacaze et al. is implemented and results are compared to the those obtained from the continuum model for granular column collapse and rigid body coupling to granular flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.