Abstract
Confocal microscopes and two-photon microscopes are powerful tools for early cancer diagnosis because of their high-resolution 3D imaging capability, but applying them for clinical use in internal organs is hindered by the lack of axially tunable lens modules with small size, high image quality and large tuning range. This paper reports a compact MEMS lens scanner that has the potential to overcome this limitation. The MEMS lens scanner consists of a MEMS microstage and a microlens. The MEMS microstage is based on a unique serpentine inverted-series-connected (ISC) electrothermal bimorph actuator design. The microlens is an aspheric glass lens to ensure optical quality. The MEMS microstage has been fabricated and the lens scanner has been successfully assembled. The entire lens scanner is circular with an outer diameter of 4.4 mm and a clear optical aperture of 1.8 mm. Experiments show that the tunable range reaches over 200 µm at only 10.5 V and the stiffness of the microstage is 6.2 N/m. Depth scan imaging by the MEMS lens scanner has also been demonstrated with a 2.2 µm resolution, only limited by the available resolution target.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.