Abstract

In this paper design, fabrication, and evaluation of an easy-to-use and low cost dielectrophoretic quantizer are introduced. The device works with standard tools in a biomedical laboratory: a stereo microscope with CCD camera and a voltage supply. A novel spiral microchannel geometry together with the coaxial electrode configuration is established. The device works with a droplet of sample, eliminating microfluidic connections, and external syringes. The proposed geometry decreases the footprint, therefore reduces the device cost, without compromizing the separation and quantization performances. Coaxial electrode geometry enables continuous electric-field application with simple voltage supplies. The devices are fabricated using a simple 3-mask process, and experiments are realized with 1 and 10 μm polystyrene beads. The results show that 1 μm particles have an average speed of 4.57 μm/s with 1.06 μm/s SD, and 10 μm particles have an average speed of 544 μm/s with 105 μm/s SD. The speed variation coefficient for 1 and 10 μm beads can be calculated as 23 and 19%, respectively. The size accuracy of the device is ± 10%, while the resolution is 20%, i.e., particles with radii different from each other by 20% can be separated. Hence, moderate separation performance with minimized cost and standard laboratory equipment is enabled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.