Abstract

This paper presents a novel prototype MEMS sensor for alternating current designed for monitoring electricity end-use in residential and commercial environments. This new current sensor design is comprised of a piezoelectric MEMS cantilever with a permanent magnet mounted on the cantilever's free end. When placed near a wire carrying AC current, the magnet is driven sinusoidally, producing a voltage in the cantilever proportional to the current being measured. Analytical models were developed to predict the applicable magnetic forces and piezoelectric voltage output in order to guide the design of a sensor prototype. This paper also details the fabrication process for this sensor design. Released piezoelectric MEMS cantilevers have been fabricated using a four-mask process and aluminum nitride as the active piezoelectric material. Dispenser-printed microscale composite permanent magnets have been integrated, resulting in the first MEMS-scale prototypes of this current sensor design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.